Using Persuasive Writing Strategies to Explain and Detect Health Misinformation

Danial Kamali^{*}, Joseph Romain^{*}, Huiyi Liu[†], Wei Peng[‡], Jingbo Meng[§], Parisa Kordjamshidi^{*}

*Department of Computer Science and Engineering, Michigan State University, †Department of Communication, Michigan State University, ‡Department of Media and Information, Michigan State University, §School of Communication, Ohio State University *{kamalida, romainj2, liuhui5, pengwei}@msu.edu, meng.28@osu.edu, kordjams@msu.edu*

Heterogeneous

Health Misinformation

- Societal impacts of health misinformation.
 - Undermining trust in medical advisories.
 - Dire consequences.
- Experts are costly.

Report: Facebook Poses A Major Threat To Public Health

Estimated views of health content from official/ misinformation websites on Facebook in 2020

Top 10 official health institutions*
Top 10 health misinformation websites

* WHO, ECDC and leading health institutes in the UK, US, France, Italy and Germany. Source: Avaaz

🐵 🗊 😑 🦳 statista 🗹

Why?

What

Automatic Misinformation Detection

Research questions

- Can language models detect misinformation?
- Can persuasive writing strategies help LLMs in misinformation detection?
- Can language models identify persuasive strategies?

New Dataset

Persuasive Writing Strategy Dataset

• Source

- A health-related subset of MultiFC.
- Filtered 599 claims to to 242 claims.

• Article Retrieval

- Manually retrieved full articles associated with each claim.
- Articles were gathered from publicly accessible domains.

Annotation Process

- Developed a novel annotation scheme for persuasive writing strategies.
- Annotated by three communication experts in studies.

Annotation scheme

Dataset Details

Persuasive Writing Strategy Dataset

• Quality Control

- Inter-annotator reliability:
 - Cohen's Kappa.
 - 88% average pairwise agreement

• Final Dataset

- 242 claim and articles with veracity (binary) labels.
- **5,666** sentences, each can be annotated with one or more strategy.

Task 1: Misinformation Detection

- **Objective:** Classify misinformation news using their claim and articles.
- Challenge:
 - Involves analyzing content veracity, context, and intent.

Is this true?

Doctor's Warning: Never Clean Your Child With Baby Wipes No Matter What.

Task 2: Persuasive Strategy Labeling

- **Objective:** Identify and categorize text spans with persuasive strategy writing.
- Challenge: Requires in-depth linguistic analysis.
- Settings:
 - Unit:
 - Sentence
 - Article
 - Span
 - Information context:
 - No context.
 - Low: 1 unit from each side.
 - High: 2 unit from each side.

Task 3: Combined

- **Objective:** Combine the detection of misinformation with the analysis of persuasive writing strategies.
- Challenge: Inherits all!
- Settings: Multi-task Learning or Pipeline setting.

1. Misinformation Detection

- Setting
 - Different input variations
 - claim, article, and their combination.
- Models Tested
 - RoBERTa: Fine-tuned on the train data.
 - GPT-4: Evaluated in zero-shot setting.
- Observation
 - Superior performance of GPT-4 over RoBERTa
 - GPT-4 improvement with combined inputs.

Input Source	$F1_{Micro}$	$F1_{Macro}$
Majority Baseline	0.673	0.402
RoBERTa claim	0.830	0.793
RoBERTa article	0.810	0.765
RoBERTa claim+article	0.823	0.799
GPT-4 _{claim}	0.837	0.791
GPT-4 article	0.848	0.830
GPT-4 _{claim+article}	0.913	0.904

Results with different inputs

2. Persuasive Writing Strategy Detection

- Sentence Level
- Tested fine-tuned RoBERTa
- F1-Macro is a more important metric.
- Results
 - Increasing context generally improves detection accuracy.
 - Level-4 only doesn't increase as context grows
 - Not related to context
 - Scientific jargon
 - Words associated with nature
 - The low results demonstrate the complexity of this task.

Level 1		
Context	F1 _{Micro}	F1 _{Macro}
None	0.668	0.662
Low	0.677	0.676
High	0.699	0.692

Level 2		
Context	F1 _{Micro}	$F1_{Macro}$
None	0.468	0.342
Low	0.501	0.372
High	0.497	0.383

Level 3			
Context	F1 _{Micro}	$F1_{Macro}$	
None	0.430	0.270	
Low	0.464	0.283	
High	0.463	0.288	

Level 4		
Context	F1 _{Micro}	F1 _{Macro}
None	0.428	0.291
Low	0.434	0.265
High	0.441	0.256

Results across different context size and layers

3. Misinformation Detection with Persuasive Strategy Detection

- Used pipeline results of RoBERTa.
- Models:
 - RoBERTa
 - Fine-tuned
 - o GPT-4
 - Zero-shot
 - In-context Learning

Assuming you are a journalism and communication expert. Is this claim correct? claim: **{claim}** We have found this article supporting the claim: article: **{article}** our communication expert reported that the article supporting this claim follows the below persuasive strategies **{labels}** You must answer to the best of your knowledge. Give me one word answer "Yes" or "No"? **[GPT]:** "Yes"

GPT-4 Prompt Template.

3. Misinformation Detection with Persuasive Strategy Detection

- Results
 - Significant improvement with GT persuasive labels.
 - GT alone performs better than claim itself.
 - It has useful information.
 - Claim + Article + GT
 - GPT-4 Performs best.
 - RoBERTa Fails due to token limitation.
 - In context learning
 - Outperforms RoBERTa predictions
 - Close to ground-truth labels

	Input Source	$F1_{Micro}$	$F1_{Macro}$
	Majority Baseline	0.673	0.402
\Rightarrow	RoBERTa _{claim}	0.830	0.793
	RoBERTa article	0.810	0.765
\Rightarrow	RoBERTa claim+article	0.823	0.799
	GPT-4 _{claim}	0.837	0.791
	GPT-4 article	0.848	0.830
	GPT-4 _{claim+article}	0.913	0.904
	Input Source	F1 _{Micro}	F1 _{Macro}
\Rightarrow	GT	0.898	0.872
	Pred _{none}	0.687	0.622
	Pred _{low}	0.735	0.704
	Pred _{high}	0.741	0.690
	Claim+GT	0.912	0.891
	Claim+Pred _{none}	0.694	0.646
	Claim+Pred _{low}	0.728	0.683
	Claim+Pred _{high}	0.735	0.672
	Claim+Article+GT	0.871	0.845
	Claim+Article+Prednone	0.748	0.721
	Claim+Article+Pred _{low}	0.762	0.722
	Claim+Article+Pred _{high}	0.782	0.749
	GPT-4 _{claim+Pred}	0.783	0.681
	GPT-4 _{claim+GT}	0.878	0.850
	GPT-4 _{claim+article+Pred}	0.913	0.901
	GPT-4 $_{claim+article+GT}$	0.939	0.933
\Rightarrow	GPT-4 <i>in-context learning</i>	0.932	0.922

3. Misinformation Detection with Persuasive Strategy Detection

- Experiment on additional benchmarks
 - RAWFC dataset
 - Claim verification with supporting articles
 - Shows real-world capability
 - Not domain specific.
 - Achieved **SOTA** on the RAWFC dataset.
 - Without search engine access.

Model	P (%)	R (%)	F1 (%)
Standard	48.5	48.5	48.5
Standardwitharticles	48.5	47.5	47.9
CoT	42.4	46.6	44.4
ReAct [†]	51.2	48.5	49.8
HiSS [†]	53.4	54.4	53.9
ICL _{ours}	56.9	55.5	55.8

Results on RAWFC benchmark.

Explainability

Persuasive writing strategies as reasoning in **Chain of Thoughts** prompting can generate explanation for the veracity labels.

User: Here we show example of persuasive strategy detection. Examples below show text spans with their corresponding persuasive strategy: span₁ \Rightarrow ['persuasive strategy₁','persuasive strategy₂,..] $span_2 \Rightarrow$ ['persuasive strategy₁','persuasive strategy₂,..] Mark the sentences in the text below with persuasive strategy labels: {article} **GPT-4:** [Then after getting the labels from the GPT-4 model] **User:** Given the labeled persuasive strategies in the above supporting article. Do you think this claim is correct? Claim: The Government is banning organic Farming Give me a Yes or No answer with your chain of thoughts. GPT-4: No, the claim that the government is banning organic farming is not correct based on the labeled persuasive strategies in the supporting article. The article uses a lot of fear and uncertainty to make its point, often exaggerating the potential effects of the bill. It also shows a distrust of government and corporations, suggesting a bias in the information presented. Furthermore, the call to action to read the legislation for oneself implies that the author may not have provided a full or accurate summary of the bill. Therefore, the claim seems to be based more on speculation and fear-mongering than on concrete evidence.

Example of a explanation generated by GPT-4

Conclusion

- Key Contributions:
 - A **novel annotation scheme** for persuasive writing strategies.
 - Utilizing these strategies to enhance the detection of health misinformation.
- Significance:
 - Improved **accuracy** and **explainability** of misinformation detection models.
 - Potential to aid in combating health misinformation..
- Closing Remark:
 - "Our approach paves the way for more nuanced and effective tools in the fight against misinformation, contributing to a healthier, better-informed society."

Thanks!

Do you have any questions?

kamalida@msu.edu