# Syntax-Guided Transformers: Elevating Compositional Generalization and Grounding in Multimodal Environments

# Danial Kamali, Parisa Kordjamshidi

Department of Computer Science and Engineering, Michigan State University kamalida@msu.edu, kordjams@msu.edu



# • Research questions

- How to help transformers generalize to higher reasoning depths in multi-modal grounding task?
- Can syntactic structure of language help with compositional generalization of multi-modal transformers?
- How do different parsing approaches influence compositional generalization capabilities?

#### Outcomes:

- We used attention masking guided by syntactic parsers to help compositional generalization and grounding.
- Compared various syntactic parsing methods, assessing their impact.
- Integrated weight sharing to alleviate the gradient vanishing issue caused by attention masking in transformer.

#### **Problem Setting**

## Task (Object Grounding & Agent Navigation)

The goal is to comprehend and apply language commands in a multimodal setting.



## **Compositional Learning Challenges**

We evaluate compositional generalization capabilities, such as understanding and combining known words and concepts in novel ways unseen in training.

| Split      | Held-out Examples                                                        |
|------------|--------------------------------------------------------------------------|
| Random     | Random.                                                                  |
| <b>A</b> 1 | yellow square referred with color & shape.                               |
| A2         | red square referred in the command.                                      |
| A3         | small cylinder referred with size and shape                              |
| <b>B</b> 1 | co-occur of small red circle and big blue square.                        |
| B2         | co-occur of same size as and inside of relations.                        |
| <b>C</b> 1 | Additional conjunction clause depth added to 2-relative-clause commands. |
| C2         | 2-relative-clause command with that is instead of and.                   |

ReaSCAN dataset test splits.

Dependency-parsing-guided Attention Masking along with Weight Sharing enhances structural generalization, while boosting efficiency in language to vision grounding:



#### **Motivation**

#### Syntactic Structure as a Key to Generalization:

- Utilizing readily available parsers to infer hints about the underlying syntactic structure.
- Removing connection instead of adding complexity

#### **Efficacy With Weight Sharing:**

- Addressing the backpropagation challenges in attention masking methods through weight sharing.
- Enhancing efficiency in model performance.

# Method

#### Syntax-guided attention masking

Masking self-attention weights of tokens that are not syntactically related

- **Dependency Parsing**: Represents relationship between tokens.
- Constituency Parsing: Represents hierarchical relationships among sentence parts.

#### Weight Sharing:

Sharing transformer encoder weights.

- Reduces parameters
- Helps with gradient vanishing

|                           |                    |                    | K                  | esuits             |                    |                    |            |                              |
|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------|------------------------------|
| Model                     | A1                 | A2                 | A3                 | B1                 | B2                 | C1                 | C2         | Avg                          |
| LSTM*                     | 50.4               | 14.7               | 50.9               | 52.2               | 39.4               | 49.7               | 25.7       | 40.40                        |
| GCN-LSTM                  | 92.3               | 42.1               | 87.5               | 69.7               | 52.8               | 57.0               | 22.1       | 60.50                        |
| Transformer*              | 96.7               | 58.9               | 93.3               | 79.8               | 59.3               | 75.9               | 25.5       | 69.90                        |
| GroCoT                    | 99.6               | 93.1               | 98.9               | 93.9               | 86.0               | 76.3               | 27.3       | 82.2                         |
| Constituency <sup>†</sup> | <b>99.75</b> ±0.11 | 96.70±1.40         | <b>99.68</b> ±0.10 | 95.19±1.17         | 88.37±1.50         | $69.07 \pm 0.60$   | 27.00±0.54 | $82.25{\scriptstyle\pm0.63}$ |
| Dependency <sup>†</sup>   | 99.65±0.9          | <b>97.37</b> ±0.48 | 99.62±0.07         | <b>95.46</b> ±2.01 | <b>90.15</b> ±3.88 | <b>92.55</b> ±1.51 | 21.77±5.25 | $85.22 \pm 0.87$             |
|                           | •                  | •                  |                    |                    | ,                  |                    |            |                              |

Generated by DALL · E 2

The result of our proposed model on the ReaSCAN dataset test splits. The results are an average of three runs. † denotes the models with masking. Models marked with \* refer to the multimodal version of their

|              |      |                   |                    | Ablat                        | tion St            | udy                |                    |                              |                              |
|--------------|------|-------------------|--------------------|------------------------------|--------------------|--------------------|--------------------|------------------------------|------------------------------|
| W/S          | Mask | <b>A</b> 1        | A2                 | A3                           | B1                 | B2                 | C1                 | C2                           | Avg                          |
| -            | -    | 99.29±0.27        | 91.82±6.50         | 98.49±1.17                   | 93.50±0.85         | 83.15±1.41         | 75.85±1.35         | <b>25.03</b> ±6.82           | 81.02±0.22                   |
| $\checkmark$ | -    | 99.68±0.22        | 97.09±1.72         | $99.64 \pm 0.20$             | 94.86±0.77         | 81.49±4.27         | 66.30±6.65         | $21.66{\scriptstyle\pm1.83}$ | $80.10{\scriptstyle\pm1.08}$ |
| -            | Dep. | 98.09±0.27        | 85.21±6.85         | $97.35{\scriptstyle\pm0.75}$ | 93.61±2.75         | 90.62±1.59         | 75.27±1.77         | $21.91{\scriptstyle\pm1.63}$ | $80.29{\scriptstyle\pm1.43}$ |
| ✓            | Dep. | <b>99.65</b> ±0.9 | <b>97.37</b> ±0.48 | <b>99.62</b> ±0.07           | <b>95.46</b> ±2.01 | <b>90.15</b> ±3.88 | <b>92.55</b> ±1.51 | 21.77±5.25                   | <b>85.22</b> ±0.87           |

The ablation study result of our modifications on ReaSCAN dataset test splits. Results are reported on an • average of three runs. We evaluate every combination of components from our best model. W/S stands for weight • sharing, and the √ shows the presence of the module. *Dep* in this table refers to the Dependency masking. We • evaluate the model with or without dependency masking in the masking part.

| Efficacy Ana                   | Efficacy Analysis |  |  |  |
|--------------------------------|-------------------|--|--|--|
| Model                          | #Parameters       |  |  |  |
| Multimodal LSTM                | 74K               |  |  |  |
| Multimodal Transformer         | 3M                |  |  |  |
| GroCoT                         | 4.6M              |  |  |  |
| Dependency <sup>†</sup> (ours) | 1.9M              |  |  |  |

Comparing model parameters: our model vs. current state-of-the-art models. Dependency<sup>†</sup> refers to the model with dependency parsing for attention masking.

# **Qualitative Analysis**

**MICHIGAN STATE** 

Pull the green circle that is inside of a big box and in the same size as a green square while zigzagging







- In 86% of validation samples, the cross-attention module showed a significant focus on the target object after attention masking.
- Masking led to a sparser distribution of attention.
  - Rather than individual words focusing on every relevant cell, they now form compositional groups, focusing collectively on specific cells.

#### Take away messages

- Exploiting syntactic structure with weight sharing in Transformer encoders significantly improves generalization.
- Using Dependency parsing was more effective than constituency parsing.
- Using weight sharing with dependency parsing alleviates the backpropagation problem caused by attention masking.

#### **REFERENCES**

[1] Sikarwar, A., Patel, A., & Goyal, N. (2022). When can transformers ground and compose: Insights from compositional generalization benchmarks. In Proceedings of the 2022 Conference on Empirical Methods in

Natural Language Processing, pp. 648–669. [2] Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D., & Lake, B. M. (2020). A benchmark for systematic

 generalization in grounded language understanding. [3] Gao, T., Huang, Q., & Mooney, R. (2020). Systematic generalization on gSCAN with language conditioned • embedding. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for • Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pp.

• 491–503. [4] Qiu, Y., Zhang, J., & Zhou, J. (2021). Improving gradient-based adversarial training for text classification by contrastive learning and auto-encoder. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1698–1707.

[5] Kim, J., Ravikumar, P., Ainslie, J., & Ontañón, S. (2021). Improving compositional generalization in classification tasks via structure annotations.



